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The recently discovered phenomenon of nonlinearsupratransmissionconsists in a sudden increase of the
amplitude of a transmitted wave triggered by the excitation of nonlinear localized modes of the medium. We
examine this process for the Fermi-Pasta-Ulam chain, sinusoidally driven at one edge and damped at the other.
The supratransmission regime occurs for driving frequencies above the upper band edge and originates from
direct moving discrete breather creation. We derive approximate analytical estimates of the supratransmission
threshold, which are in excellent agreement with numerics. When analyzing the long-time behavior, we dis-
cover that, below the supratransmission threshold, aconductingstationary state coexists with theinsulating
one. We explain thebistablenature of the energy flux in terms of the excitation of quasiharmonic extended
waves. This leads to the analytical calculation of alower-transmissionthreshold which is also in reasonable
agreement with numerical experiments.
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I. INTRODUCTION

In a recent series of interesting papers Leon and co-
workers [1–4] discovered that nonlinear chains driven at a
boundary can propagate energy in the forbidden band gap.
Numerical experiments were performed for harmonic driv-
ing, and the semi-infinite chain idealization was simulated by
adding damping on the boundary opposite to driving. In this
case, energy transmission occurs above a well defined(fre-
quency dependent) critical amplitude. This phenomenon has
been callednonlinear supratransmissionby the authors, and
is characterized by the propagation of nonlinear localized
modes(gap solitons) inside the bulk. Several models have
been considered: sine-Gordon and Klein-Gordon[1], double
sine-Gordon and Josephson transmission lines[2], Bragg
media[3], and an experimental realization has been proposed
for a mechanical system of coupled pendula[2]. The generic
features of the supratransmission instability have been de-
scribed in terms of an evanescent wave destabilization[4].
Moreover, the same process has been described in Ref.[5]
for the discrete nonlinear Schrödinger equation, suggesting
an experimental application to optical waveguide arrays.

In this paper we show that the supratransmission phenom-
enon is present for Fermi-Pasta-Ulam(FPU) nonlinear
chains[6]. At variance with all previously considered cases,
the harmonic driving frequency must lie above the phonon
band, since the FPU interparticle potential is translationally
invariant and, hence, a forbidden lower band does not exist
(the phonon spectrum begins at zero frequency). This entails
that the nonlinear modes which propagate in the bulk are
movingdiscrete breathers[7]. Exact static discrete breathers

profiles have been presented in the literature, but here we use
approximate analytic expressions for both the low-amplitude
solitonic case and for the large amplitude situation[8]. This
allows to perform a study of the instability at the boundary
and a detailed analysis of the process which leads to the birth
and propagation of the discrete breather. By using these ap-
proximate solutions, we are able to provide analytic expres-
sions for the supratransmission critical amplitudes as a func-
tion of the forcing frequencies, which are then successfully
compared with numerically determined values.

Besides that, we analyze the long-time behavior of the
system, studying the formation of a stationary state with a
given energy flux across the chain. Theorder parameterof
the transition from theinsulating to theconductingstate is,
indeed, the average energy flux, which displays a jump at the
supratransmission threshold(which could then be thought of
as a sort of nonequilibrium first-order transition). We dis-
cover that lowering the amplitude below the threshold, after
the stationary state is established, does not interrupt trans-
mission: theconductingstate survives even at smaller ampli-
tudes and coexists with theinsulating state(a sort of bista-
bility is present in the system). By further reducing the
amplitude, a threshold appears below which the energy flux
vanishes without any apparent discontinuity(here we have a
sort of second-order transition): we develop a theoretical
analysis of this new threshold phenomenon, which was ab-
sent in previous studies.

The paper is organized as follows. In Sec. II we introduce
the model and the equations of motion. Section III deals with
the calculation of the energy flux in the quasilinear approxi-
mation. Section IV illustrates all analytic and numerical re-
sults concerning the determination of the supratransmission
threshold. Section V is devoted to the characterization of the
stationary states and of their bistability. Section VI contains
some conclusions. In the Appendix we report, for complete-
ness, a calculation of the nonlinear phonon dispersion
relation.
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II. THE MODEL

We consider the Fermi-Pasta-Ulam(FPU) chain [6],
which is an extremely well studied nonlinear lattice for
which a large class of quasiharmonic and localized solutions
is known. The equations of motion for the so-calledb-FPU
chain (interparticle potential with a quadratic and a quartic
term) are

ün = un+1 + un−1 − 2un + sun+1 − und3 + sun−1 − und3, s1d

whereun stands for the displacement ofnth site in dimen-
sionless unitssn=0,1,2,… ,Nd. All force parameters have
been chosen equal to unity for computational convenience.

To simulate the effect of an impinging wave we impose
the boundary condition

u0std = A cosvt. s2d

Free boundary conditions are enforced on the other side of
the chain.

In order to be able to observe a stationary state in the
conductingregime we need to steadily remove the energy
injected in the lattice by the driving force. Thus, we damp a
certain number of the rightmost sites(typically 10% of the
total) by adding a viscous term −gu̇n to their equations of
motion. A convenient indicator to look at is the averaged
energy fluxj =onjn/N, where the local fluxjn is given by the
following formula [9]:

jn =
1

2
su̇n + u̇n+1dfun+1 − un + sun+1 − und3g . s3d

Time averages of this quantity are taken in order to charac-
terize the insulating(zero flux)/conducting (nonzero flux)
state of the system.

III. IN-BAND DRIVING: NONLINEAR PHONONS

For illustration, we first discuss the case when the driving
frequency is located inside the phonon band. Although
trivial, this issue is of importance to better appreciate the
fully nonlinear features described later on.

Under the effect of the driving(2), we can look for ex-
tended quasiharmonic solutions(nonlinear phonons) of the
form

un = A cosskn− vtd. s4d

We consider the semi-infinite chain, so thatk varies continu-
ously between 0 and 2p. The nonlinear dispersion relation
can be found in the rotating wave approximation(see, e.g.,
Ref. [10]). Neglecting higher-order harmonics(see the Ap-
pendix for details) it reads

v0
2sk,Ad = 2s1 − coskd + 3s1 − coskd2A2. s5d

Thus the nonlinear phonon frequencies range from 0 to the
upper band edgev0sp ,Adù2.

If we simply assume that only the resonating phonons
whose wave numbers satisfy the condition

v = v0sk,Ad s6d

are excited, we can easily estimate the energy flux. Neglect-
ing, for simplicity, the nonlinear force terms in the definition
of the flux (3), we have

j =
1

2
vsk,Ad v2A2, s7d

where v is the group velocity as derived from dispersion
relation (5). This simple result is in very good agreement
with simulations, at least for small enough amplitudes(see
Fig. 1). For A.0.15 the measured flux is larger than the
estimate(7), indicating that something more complicated oc-
curs in the bulk(possibly, a multiphonon transmission) and
that higher-order nonlinear terms must be taken into account.

IV. OUT-BAND DRIVING: SUPRATRANSMISSION

Let us now turn to the more interesting case in which the
driving frequency lies outside the phonon band,v
.v0sp ,0d=2. In a first series of numerical experiments we
have initialized the chain at rest and switched on the driving
at time t=0. To avoid the formation of sudden shocks[11],
we have chosen to increase smoothly the amplitude from 0 to
the constant valueA at a constant rate, i.e.,

u0 = A cossvtdf1 − e−t/t1g , s8d

where typically we sett1=10.
At variance with the case of in-band forcing, we observe

a sharp increase of the flux at a given threshold amplitude of
the driving, see Fig. 2. This phenomenon has been denoted
as nonlinear supratransmission[1] to emphasize the role
played by nonlinear localized excitations in triggering the
energy flux.

This situation should be compared with the one of in-band
driving, shown in Fig. 1, where no threshold for conduction
exists and the flux increases continuously from zero(more or
less quadratically in the amplitude). Indeed, the main conclu-

FIG. 1. Average energy flux vs driving amplitude for in-band
forcing; v=1.8 andg=5. Data have been averaged over 105 periods
of the driving. The inset is an enlargement of the small-amplitude
region and the dashed line is the single nonlinear phonon approxi-
mation (7).
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sion that can be drawn from the previous section is that there
cannot be any amplitude threshold for energy transmission in
the case of in-band forcing. Moreover, although at the upper
band edge the flux vanishes, since it is proportional to the
group velocity [see formula(7)], it is straightforward to
prove that it goes to zero with the square root of the distance
to the band edge frequency. Hence, the sudden jump we ob-
serve in the out-band case cannot be explained by any sort of
quasi-linear approximation.

In the following we investigate the physical origin of non-
linear supratransmission, distinguishing the cases of small
and large amplitudes.

A. Small amplitudes

When the driving frequency is only slightly above the
bands0,v−2!1d, one can resort to the continuum enve-
lope approximation. Since we expect the zone-boundary
modek=p to play a major role, we let

un = s− 1dn1

2
fcn eivt + cn

* e−ivtg . s9d

In the rotating wave approximation[10] and for slowly vary-
ing cn one obtains from the FPU lattice equations the non-
linear Schrödinger equationfcn→csx,tdg [12,13]

2ivċ = sv2 − 4dc − cxx − 12cucu2, s10d

with the boundary conditioncs0,td=A.
The well-knownstatic single-soliton solution of Eq.(10)

corresponds to the family of envelope solitons(low-
amplitude discrete breathers)

un = as− 1dncossvtdsechfÎ6sn − x0dag , s11d

with amplitudea=Îsv2−4d /6. The maximum of the soliton
shape is fixed by the boundary condition to be

x0 = ±
acoshsa/Ad

aÎ6
. s12d

In this approximation we have two possible solutions: one
with the maximum outside the chain, which is purely decay-
ing inside the chain[minus sign in Eq.(12)], and another
with the maximum located within the chain[plus sign in Eq.
(12)]. Overcoming the supratransmission threshold corre-
sponds to the disappearance of both solutions. Indeed, when
the driving amplitude reaches the critical valueAth, given by

v2 = 4 + 6Ath
2 , s13d

solution (11) ceases to exist.
We have investigated this issue by simulating the lattice

dynamics with the initial conditions given by Eqs.(11) and
(12). The evolution of the local energy

en =
u̇n

2

2
+

1

2
fVsun+1 − und + Vsun − un−1dg s14d

with Vsxd=x2/2+x4/4, is shown in Fig. 3. The solution with
the maximum outside the chain(upper figure) stabilizes after
the emission of a small amount of radiation(generated by the
fact that we have used an approximate solution). On the con-

FIG. 2. Average energy flux vs driving amplitude for out-band
forcing; v=3.5 andg=5. Data have been averaged over 23105

periods of the driving for a chain ofN=512 particles.

FIG. 3. Snapshot of the local energy below the supratransmis-
sion thresholdA=0.15,Ath for v=2.1 andg=10. The initial con-
dition is an envelope soliton(11) with x0=−1.8 (above) and
x0= +1.8 (below).
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trary, the other solution(lower figure) slowly moves towards
the right and, eventually, leaves a localized boundary soliton
behind. The release of energy to the chain is nonstationary
and does not lead to a conducting state.

The scenario drastically changes at the supratransmission
amplitudeAth. The chain starts to conduct: a train oftravel-
ing envelope solitons is emitted from the left boundary(see
Fig. 4). Here we should emphasize that the envelope soliton
solution (11), which is characterized by thek=p carrier
wave number, has a zero group velocity. Thus, transmission
cannot be realized by such envelope solitons. Instead, trans-
mission starts when the driving frequency resonates with the
frequency of the envelope soliton with carrier wave number
k=psN−2d /N, next to thep mode. However, as far as we
consider a large number of oscillatorssN=500d, we can still
use expression(13) for the p-mode frequency.

B. Large amplitudes

The above soliton solution is valid in the continuum en-
velope limit, and is therefore less and less accurate as its
amplitude increases. Indeed, if the weakly nonlinear condi-
tion is violated, the width of the envelope soliton becomes
comparable with lattice spacing and, thus, one cannot use the
continuum envelope approach. Fortunately, besides the
slowly varying envelope soliton solution(11), an analytic
approximate expression exists for large amplitude static dis-
crete breather solutions, which is obtained from an exact
extended plane wave solution with “magic” wave number
2p /3 [8]

un = as− 1dncosfvBsadtgcosSp

3
n ± x0D , s15d

if uspn/3d±x0u,p /2 andun=0, otherwise.
Herex0 is defined as follows

x0 = a cossA/ad, s16d

where A is the driving amplitude. The breather frequency
vBsad depends on amplitudea as follows

vBsad . 1.03
Î3p2s4 + 9a2d

4Kssd
, s17d

whereKssd is the complete elliptic integral of the first kind
with arguments=3a/Î2s9a2+4d and the factor 1.03 takes
into account a rescaling of the frequency of the “tailed”
breather[14] (see also Ref.[15]). As previously for the case
of the envelope soliton solution, we perform a numerical
experiment where we put initially on the lattice the breather
solution of formula(15). Choosing the plus sign in this ex-
pression, we do not observe any significant transmission of
energy inside the chain. Instead, the minus sign causes the
appearance of a moving breather, which travels inside the
chain leaving behind the static breather solution with plus
sign. Figure 5 presents this numerical experiment.

The static breather solution(15) ceases to exist if the driv-
ing amplitude exceeds the thresholdAth given by the reso-
nance condition

v = vBsAthd. s18d

Above this threshold the supratransmission process begins
via the emission of a train of moving breathers from the
boundary, exactly as it happens in the case of small ampli-
tudes. It should be mentioned again that the transmission
regime is established due to moving discrete breathers. It has
been remarked[8] that discrete breathers are characterized
by quantized velocities, while their frequency is given by the
same formula(17). This explains why one can use the reso-
nance condition(18) for the static discrete breather solution
(15) to define the supratransmission threshold in the large
amplitude limit.

C. Supratransmission threshold: Numerical test

To check these predictions, we have performed a numeri-
cal determination ofAth for several values ofv, starting the
chain at rest. This is accomplished by gradually increasingA
and looking for the minimal valueAth for which a sizeable
energy propagates into the bulk of the chain. At early time,

FIG. 4. Snapshot of the local energy at the transmission thresh-
old A=0.253<Ath for v=2.1 andg=10. The initial condition is the
envelope soliton(11) with x0<0.

FIG. 5. Snapshot of particle displacementsun below the su-
pratransmission threshold for a driving frequencyv=5.12 and a
driving amplitudeA=0.5,Ath=2.05. One can observe, similarly to
the lower Fig. 3, that a moving discrete breather appears at the left
boundary and propagates inside the bulk, leaving behind the static
solution.
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the scenario is qualitatively similar to the one shown in Fig.
4. Later on, the interaction of nonlinear and quasilinear
modes and their “scattering” with the dissipating right
boundary establishes a steady energy flux into the chain. A
conducting steady state, which is present also belowAth, will
be discussed in Sec. V in connection with a lower-
transmission thresholdAth

− .
As seen in Fig. 6, formulas(18) [with definition (17)] and

(13) (see the inset) are in excellent agreement with simula-
tions for largeA.2 and smallA&1 amplitudes, respec-
tively. The accuracy of the analytical estimate in formulas
(18) and(13) is of the order of a few percent, at worst, in the
intermediate amplitude range. We do not discuss here the
lower curves in Fig. 6, which are related to the lower-
transmission threshold.

For comparison, we have checked that the supratransmis-
sion threshold is definitely not associated with the quasihar-
monic waves with nonlinear dispersion relation(5). If this
were the case, the transmission should start when the oscil-
lation amplitude reaches the value for which the resonance
condition v=v0sk,Ad holds. Asv0sk,Ad is maximal for k
=p, we can get the expression for the threshold value from
the relationv=v0sp ,Athd, i.e.,

v2 = 4 + 12Ath
2 . s19d

The amplitude values one obtains from Eq.(19) are far away
from the numerical values and we do not even show them in
Fig. 6. This is a further confirmation that supratransmission
in the FPU model originates from direct discrete breather
generation as it happens in the cases of discrete sine-Gordon
and nonlinear Klein-Gordon lattices[1].

V. STATIONARY STATES

As announced in the Introduction, we have also investi-
gated the long-time behavior of the chain. As shown in the
upper Fig. 7 the time averaged local energy[see formula
(14)] reaches asymptotically a given profile: local energy
monotonously decreases along the chain as in the case of
simulations of stationary heat transport with two thermal
baths[9]. The time average of the flux(3) in the stationary
state is almost constant along the chain, apart from statistical
fluctuations and some persistent flux oscillations at the left
boundary.

However, as we mentioned above, the value of the sta-
tionary flux depends on the initial state of the chain. To il-
lustrate this effect, let us excite the chain imposing a differ-
ent boundary condition

u0 = cossvtdfBs1 − e−t/t1d + sA − Bds1 − e−t/t2dg , s20d

wheret2@t1 (in the experimentt2=10t1=100), A,Ath and
B.Ath. Obviously, both the boundary conditions(8) and
(20) lead to the same driving amplitudeA for t@t2. How-
ever, at variance with Eq.(8), when imposing Eq.(20), the
instantaneous forcing amplitude overcomes the critical am-
plitude Ath for a time of the order oft2, which is enough to
establish a stationary flux regime. This drastically reduces
the transmission threshold to a valueAth

− ,Ath, which we
denote aslower-transmission threshold. This is the first ob-
servation of this phenomenon, of which we will give a the-
oretical interpretation in the following. The numerical deter-
mination of Ath

− versus the driving frequencyv is reported
with diamonds in Fig. 6.

In the amplitude intervalfAth
− ,Athg, two steady states co-

exist, aconductingstate and aninsulatingone. Each of the
two steady states can be attained with different initial condi-
tions of the chain and different driving pathways. For in-
stance, the conducting state is reached when imposing driv-
ing (20), the insulating one when using Eq.(8). It is a typical

FIG. 6. Comparison between analytic estimates and numerical
values of threshold amplitudes vs the driving frequency. Main plot:
the full dots are the numerical values ofAth and the solid line is a
plot of formulas(17) and(18), which are valid for large amplitudes.
The inset shows an enlargement of the smallAth region, in order to
illustrate the accuracy of the small-amplitude approximation(13)
(dotted line). The diamonds are simulation data for the lower-
transmission thresholdAth

− and the dashed line is formula(22). No-
tice how the latter is accurate only for small enough amplitudes(see
again the inset).

FIG. 7. Time-averaged local energy(above) and energy flux
(below) versus lattice position in the case of out-band driving;v
=3.5 andA=1.27. The 50 rightmost particles out ofN=512 have
been damped withg=5. The averages are taken over 23105 driv-
ing periods.
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bistablesituation, where two(possibly chaotic) attractors co-
exist in a given control parameter range.

This behavior is illustrated in Fig. 8 using a different
simulation method. The average flux is computed after
changingA stepwise. A back and forth sweep around the
amplitude intervalfAth

− ,Athg reveals the presence of the two
states.

A justification of the presence of the lower-transmission
threshold can be given in terms of quasilinear theory. This
theory leads to dispersion relation(5) only if one restricts to
a single right-propagating mode. However, due to reflection
with the boundary and to mode interaction, both the right-
propagating mode and the left-propagating one can contrib-
ute to the dispersion relation. In the Appendix, we derive this
more general dispersion relation. After introducing the com-
plex mode amplitudeak for the kth mode, the dispersion
relation takes the following form:

vskd2 = 2s1 − coskd + 3s1 − coskd2fuaku2 + 2ua−ku2g .

s21d

In order to fulfill the resonance condition with both the right-
propagatingsakd and the left-propagatingsa−kd mode, their
amplitudes must be equaluaku = ua−ku. Sincevskd is maximal
for k=p, the condition for the threshold amplitude is

v2 = 4 + 36sAth
− d2. s22d

This analytical estimate(dashed line in Fig. 6) fits well the
numerical data only for driving frequencies close to the band
edge(see the inset). This can be justified by taking into ac-
count that dispersion relation(21) is valid only in the weakly

nonlinear regime, i.e., mode amplitudesuaku and ua−ku much
smaller than 1. This condition certainly applies to the case in
which the driving frequency is close to the band edge, since,
then, the threshold amplitudeAth

− is small. When the driving
frequency is far from the band edge, one has to take into
account higher-order corrections. The inclusion of the first
“satellite” modes3kd produces a lower threshold amplitude,
but the agreement with numerical data extends only to
slightly larger amplitudes. To obtain a definitely better agree-
ment, one should treat all satellite modes 5k, 7k, etc. We
briefly discuss this aspect in the Appendix.

From the above considerations, it follows that the bistable
nature of the energy flux can be explained by making refer-
ence to the different excitations of the system. Indeed, with
the system initially at rest, when following the driving
method (8), extended quasiharmonic waves cannot be ex-
cited. Then, energy flow appears only when the driving am-
plitude reaches the value necessary for localized mode exci-
tation. On the other hand, with driving(20), the energy flow
is initiated by the overcoming of the supratransmission
threshold and then sustained also by extended quasiharmonic
waves.

It is also possible to give a heuristic argument to explain
why the transition from nonzero to zero flux is “continuous”
at the lower-transmission thresholdAth

− , while there is flux
jump at the supratransmission thresholdAth. When the quasi-
harmonic waves are already excited, reducing the driving
amplitude diminishes also the number of resonating modes
continuously. Hence, the flux goes continuously to zero pro-
portionally to this number, producing a sort ofsecond-order
phase transition, when the flux is considered as anorder
parameter. On the contrary, when increasing the driving am-
plitude with the lattice at rest across the supratransmission
thresholdAth, localized modes are excited, which succes-
sively excite also extended waves. Hence, a nonzero flux is
created suddenly from the zero flux state, generating a sort of
first-order phase transition.

VI. CONCLUSIONS AND PERSPECTIVES

We have discussed the supratransmission phenomenon for
the Fermi-Pasta-Ulam one-dimensional lattice. A theory,
based on a resonance condition of the driving frequency with
the typical frequency of localized excitations(solitons,
breathers), gives a good agreement of the supratransmission
threshold with numerical data. Below this threshold two
steady states coexist, a conducting and an insulating one. For
even lower driving amplitudes a further transition occurs to a
region where only the insulating state persists: we have
called this new phenomenon lower-transmission threshold.
Imposing a resonance condition for nonlinear quasiharmonic
waves, we are able to derive an analytic expression for the
lower-transmission threshold amplitude.

At the supratransmission threshold a jump in the energy
flux appears. This is reminiscent of a first-order phase tran-
sition. At variance, at the lower-transition threshold the flux
goes to zero continuously. This analogy with non-
equilibrium phase transitions[17] should be further ex-
plored.

FIG. 8. Energy flux versus driving amplitude forv=3, N=512,
andg=5. The coexistence of theconductingandinsulatingregimes
is revealed by sweeping the forcing amplitude in the range
fAth

− ,Athg. The sweeping direction is indicated by the arrows. The
analytical values of the two thresholds are indicated by the vertical
dashed lines. While the prediction for the supratransmission thresh-
old Ath is quite good, the one for the lower-transmission threshold
Ath

− overestimates the numerical value(the prediction becomes bet-
ter for smaller driving frequencies, as shown in Fig. 6). In order to
show that the steady state is already reached for these integration
times, results for increasing averaging times are displayed with dif-
ferent symbols.
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Fluctuations in steady states could be analyzed to verify
the possible role played by the Gallavotti-Cohen out-of-
equilibrium fluctuation theorem[18].

The supratransmission phenomenon is quite generic and
has already been observed experimentally in a chain of
coupled pendula[2]. Also the bistability of conducting/
insulating states is generic and could be observed experimen-
tally in similar conditions. For instance, one could apply this
theory to micromechanical experiments of the type per-
formed by Sievers and co-workers[19].

ACKNOWLEDGMENTS

We thank J. Leon and D. Mukamel for useful discussions.
This work was funded by contract COFIN03 of the Italian
MIUR “Order and chaos in nonlinear extended systems” and
by the INFM-PAIS project “Transport phenomena in low-
dimensional structures.” One of the authors(R.K.) was also
supported by the CNR-NATO and the USA CRDF Grant No.
GP2-2311-TB-02.

APPENDIX A: NONLINEAR PHONON DISPERSION

In order to derive the nonlinear dispersion relation for
extended quasiharmonic waves, let us seek for the solutions
of the equations of motion(1) of the form

un =
1

2o
p

fape
ifvspdt+png + a−p

† e−ifvspdt−pngg , sA1d

where vspd is the frequency of thepth mode andap its
complex amplitude. Substituting this Fourier expansion into
the equations of motion, one gets the following infinite set of
algebraic equations for mode amplitudes[16]

fvspd2 − 2s1 − cospdgap = 6 o
q1,q2

Gq1,q2

p aq1
aq2

aq1+q2−p
† ,

sA2d

where

Gq1,q2
p =

1

4
f1 + cossq1 + q2d + cossp − q2d + cossp − q1d

− cosp − cosq1 − cosq2 − cossp − q1 − q2dg.

If only a single modep=k is excited, one gets the following
dispersion relation

vskd2 = 2s1 − coskd + 3s1 − coskd2uaku2, sA3d

which has been introduced in Eq.(5).
On the other hand, when both modek and mode −k are

excited, one obtains

vskd2 = 2s1 − coskd + 3s1 − coskd2fuaku2 + 2ua−ku2g ,

sA4d

which is presented as Eq.(21) in the text.
As also mentioned in the text, one must sometimes con-

sider the excitation of “satellite” modes 3k, 5k, etc. The in-
clusion of the 3k mode produces the addition of the follow-
ing term

3f3 cos2k − 1 − 2 cos3 kgsua−ku4 + 2ua−ku2uaku2d , sA5d

to the right-hand side of Eq.(A4). This gives the following
resonance condition atk=p

v2 = 4 + 36sAth
− d2S1 +

12sAth
− d2

v2 − 4
D ,

where v and Ath
− are the driving frequency and lower-

threshold amplitude, respectively. Since the coefficient of the
sAth

− d4 term in this relation is always positive, the threshold
amplitude one obtains is smaller that the one derived from
Eq. (22) in the text.
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